9303753286127016 PRACTICE QUESTIONS ON BASIC PROPORTIONALITY THEOREM

PRACTICE QUESTIONS ON BASIC PROPORTIONALITY THEOREM

 

PRACTICE QUESTIONS ON BASIC PROPORTIONALITY THEOREM

Question 1 :

In ΔABC, D and E are points on the sides AB and AC respectively such that DE  BC (i) If AD/D3/and AC = 15 cm find AE.

(ii) If AD = 8x −7 , DB = 5x −3 , AE = 4x −3 and EC = 3x −1  find the value of x.

Question 2 :

ABCD is a trapezium in which AB || DC and P,Q are points on AD and BC respectively, such that PQ || DC if PD = 18 cm, BQ = 35 cm and QC = 15 cm, find AD

Question 3 :

In ΔABC, D and E are points on the sides AB and AC respectively. For each of the following cases show that DE ||BC

(i) AB = 12 cm, AD = 8 cm, AE = 12 cm and AC = 18 cm.

(ii) AB = 5.6 cm, AD = 1.4 cm, AC = 7.2 cm and AE = 1.8 cm.






Solutions : 

Question 1 :

In ΔABC, D and E are points on the sides AB and AC respectively such that DE  BC (i) If AD/D3/and AC = 15 cm find AE.

Solution :

AD/DB  =  AE/EC

AC  =  15 (Given)

Let AE  =  x and EC  =  15 - x

3/4  =  x/(15-x)

3(15 - x)  =  4x

45 - 3x  =  4x

4x + 3x  =  45

7x  =  45

x  =  45/7

x  =  6.43

(ii) If AD = 8x −7 , DB = 5x −3 , AE = 4x −3 and EC = 3x −1  find the value of x.

Solution :

AD/DB  =  AE/EC

(8x - 7)/(5x - 3)  =  (4x - 3)/(3x - 1)

(8x - 7) (3x - 1)  =  (4x - 3)(5x - 3)

24x2 - 8x - 21x + 7  =  20x2 - 12x - 15x + 9

24x2-20x- 29x + 27x + 7 - 9  =  0

4x2- 2x - 2  =  0

2x2- x - 1  =  0

(2x + 1) (x - 1)  =  0

x  =  -1/2 and x = 1

Hence the value of x is 1.

Question 2 :

ABCD is a trapezium in which AB || DC and P,Q are points on AD and BC respectively, such that PQ || DC if PD = 18 cm, BQ = 35 cm and QC = 15 cm, find AD

Solution :

Let us draw the a rough picture based on the given information.

Let us join DB.

In triangle DAB,

PD/PA  =  DT/TB  ----(1)

In triangle DBC, 

BT/TD  =  BQ/QC 

By taking reciprocal on both sides,

TD/BT  =  QC/BQ  ----(2)

(1)  =  (2) 




PD/PA  =  QC/BQ  

18/PA  =  15/35

PA  =  18(35)/15

PA  =  42

AD  =  42 + 18

AD  =  60 cm

Question 3 :

In ΔABC, D and E are points on the sides AB and AC respectively. For each of the following cases show that DE ||BC

(i) AB = 12 cm, AD = 8 cm, AE = 12 cm and AC = 18 cm.

Solution :

AD  =  8

AB  =  AD + DB

12  =  8 + DB

DB  =  12 - 8

DB  =  4

AC  =  18

AC  =  AE + EC

18  =  12 + EC

EC  =  18 - 12

EC  =  6 cm

AD/DB  =  AE/EC

8/4  =  12/6

2  =  2

Hence DE ||BC.

(ii) AB = 5.6 cm, AD = 1.4 cm, AC = 7.2 cm and AE = 1.8 cm.

Solution :

AD  =  1.4

AB  =  AD + DB

5.6  =  1.4 + DB

DB  =  5.6 - 1.4

DB  =  4 .2 cm

AC  =  7.2

AC  =  AE + EC

7.2  =  1.8 + EC

EC  =  7.2-1.8

EC  =  5.4 cm

AD/DB  =  AE/EC

1.4/4.2  =  1.8/5.4

0.33  =  0.33

Hence DE ||BC.


Balkishan Agrawal

At the helm of GMS Learning is Principal Balkishan Agrawal, a dedicated and experienced educationist. Under his able guidance, our school has flourished academically and has achieved remarkable milestones in various fields. Principal Agrawal’s vision for the school is centered on providing a nurturing environment where every student can thrive, learn, and grow.

Post a Comment

Previous Post Next Post