MCQ Questions for Class 10 Maths: Ch 8 Introduction to Trigonometry
1. If x and y are complementary angles, then
(a) sin x = sin y
(b) tan x = tan y
(c) cos x = cos y
(d) sec x = cosec y
â–º (d) sec x = cosec y
2. sin 2B = 2 sin B is true when B is equal to
(a) 90°
(b) 60°
(c) 30°
(d) 0°
► (d) 0°
3. If ΔABC is right angled at C, then the value of cos (A + B) is
(a) 0
(b) 1
(c) 1/2
(d) √3/2
â–º (a) 0
4. If sin θ + sin² θ = 1, then cos² θ + cos4 θ = ____
(a) -1
(b) 0
(c) 1
(d) 2
â–º (c) 1
5. If x = a cos 0 and y = b sin 0, then b2x2 + a2y2 =
(a) ab
(b) b2 + a2
(c) a2b2
(d) a4b4
â–º (c) a2b26. If cos A + cos2 A = 1, then sin2 A + sin4 A is
(a) -1
(b) 0
(c) 1
(d) 2
â–º (c) 1
7. The value of cos θ cos(90° - θ) – sin θ sin (90° - θ) is:
(a) 1
(b) 0
(c) -1
(d) 2
â–º (b) 0
â–º (b) 0
8. If tan 2A = cot (A – 18°), then the value of A is
(a) 24°
(b) 18°
(c) 27°
(d) 36°
► (d) 36°
9. If tan θ = 12/5, then 1+sinθ/1-sinθ is equal to
(a) 24
(b) 12/13
(c) 25
(d) 9
â–º (c) 25
10. If sin θ − cos θ = 0, vthen the value of θ is
(a) 90°
(b) 30°
(c) 45°
(d) 60°
► (c) 45°
11. Ratios of sides of a right triangle with respect to its acute angles are known as
(a) trigonometric identities
(b) trigonometry
(c) trigonometric ratios of the angles
(d) none of these
â–º (c) trigonometric ratios of the angles
12. Out of the following options, the two angles that are together classified as complementary angles are
(a) 120° and 60°
(b) 50° and 30°
(c) 65° and 25°
(d) 70° and 30°
► (c) 65° and 25°
13. (1 + tanθ + secθ) (1 + cotθ - cosecθ) is equal to
(a) 0
(b) 1
(c) 2
(d) -1
â–º (c) 2
14. If √3tanθ = 3sinθ, then the value of sin2θ−cos2θ is
(a) 0
(b) 1
(c) 1/2
(d) 1/3
â–º (d) 1/3
15. 7 sin2θ + 3 cos2θ = 4 then :
(a) tan θ = 1/√2
(b) tan θ = 1/2
(c) tan θ = 1/3
(d) tan θ = 1/√3
► (d) tan θ = 1/√3
16. If sin A = 1/2, then the value of cot A is
(a) √3
(b) 1/√3
(c) √3/2
(d) 1
► (a) √3
17. If cos 9α = sin α and 9α < 90°, then the value of tan 5α is
(a) 1/√3
(b) √3
(c) 1
(d) 0
â–º (c) 1
18. Given that sin A=1/2 and cos B=1/√2 then the value of (A + B) is:
(a) 30°
(b) 45°
(c) 75°
(d) 15°
► (c) 75°
19. If sin x + cosec x = 2, then sin19x + cosec20x =
(a) 219
(b) 220
(c) 2
(d) 239
â–º(c) 220. In right triangle ABC, right angled at C, if tan A = 1, then the value of 2 sin A cos A is
(a) 0
(b) 1
(c) – 1
(d) 2
â–º (b) 1
21. If cos (40° + A) = sin 30°, the value of A is:​
(a) 60°
(b) 20°
(c) 40°
(d) 30°
► (b) 20°
22. If 0° < θ < 90°, then sec 0 is
(a) >1
(b) < 1
(c) =1
(d) 0
â–º (a) >1
23. If cos (α + β) = 0, then sin (α – β) can be reduced to
(a) cos β
(b) cos 2β
(c) sin α
(d) sin 2α
► (b) cos 2β
24. sin (45° + θ) – cos (45° – θ) is equal to
(a) 2 cos θ
(b) 0
(c) 2 sin θ
(d) 1
â–º (b) 0