MCQ Questions for Class 10 Maths: Ch 8 Introduction to Trigonometry
1. If x and y are complementary angles, then
(a) sin x = sin y
(b) tan x = tan y
(c) cos x = cos y
(d) sec x = cosec y
► (d) sec x = cosec y
2. sin 2B = 2 sin B is true when B is equal to
(a) 90°
(b) 60°
(c) 30°
(d) 0°
► (d) 0°
3. If ΔABC is right angled at C, then the value of cos (A + B) is
(a) 0
(b) 1
(c) 1/2
(d) √3/2
► (a) 0
4. If sin θ + sin² θ = 1, then cos² θ + cos4 θ = ____
(a) -1
(b) 0
(c) 1
(d) 2
► (c) 1
5. If x = a cos 0 and y = b sin 0, then b2x2 + a2y2 =
(a) ab
(b) b2 + a2
(c) a2b2
(d) a4b4
► (c) a2b26. If cos A + cos2 A = 1, then sin2 A + sin4 A is
(a) -1
(b) 0
(c) 1
(d) 2
► (c) 1
7. The value of cos θ cos(90° - θ) – sin θ sin (90° - θ) is:
(a) 1
(b) 0
(c) -1
(d) 2
► (b) 0
► (b) 0
8. If tan 2A = cot (A – 18°), then the value of A is
(a) 24°
(b) 18°
(c) 27°
(d) 36°
► (d) 36°
9. If tan θ = 12/5, then 1+sinθ/1-sinθ is equal to
(a) 24
(b) 12/13
(c) 25
(d) 9
► (c) 25
10. If sin θ − cos θ = 0, vthen the value of θ is
(a) 90°
(b) 30°
(c) 45°
(d) 60°
► (c) 45°
11. Ratios of sides of a right triangle with respect to its acute angles are known as
(a) trigonometric identities
(b) trigonometry
(c) trigonometric ratios of the angles
(d) none of these
► (c) trigonometric ratios of the angles
12. Out of the following options, the two angles that are together classified as complementary angles are
(a) 120° and 60°
(b) 50° and 30°
(c) 65° and 25°
(d) 70° and 30°
► (c) 65° and 25°
13. (1 + tanθ + secθ) (1 + cotθ - cosecθ) is equal to
(a) 0
(b) 1
(c) 2
(d) -1
► (c) 2
14. If √3tanθ = 3sinθ, then the value of sin2θ−cos2θ is
(a) 0
(b) 1
(c) 1/2
(d) 1/3
► (d) 1/3
15. 7 sin2θ + 3 cos2θ = 4 then :
(a) tan θ = 1/√2
(b) tan θ = 1/2
(c) tan θ = 1/3
(d) tan θ = 1/√3
► (d) tan θ = 1/√3
16. If sin A = 1/2, then the value of cot A is
(a) √3
(b) 1/√3
(c) √3/2
(d) 1
► (a) √3
17. If cos 9α = sin α and 9α < 90°, then the value of tan 5α is
(a) 1/√3
(b) √3
(c) 1
(d) 0
► (c) 1
18. Given that sin A=1/2 and cos B=1/√2 then the value of (A + B) is:
(a) 30°
(b) 45°
(c) 75°
(d) 15°
► (c) 75°
19. If sin x + cosec x = 2, then sin19x + cosec20x =
(a) 219
(b) 220
(c) 2
(d) 239
►(c) 220. In right triangle ABC, right angled at C, if tan A = 1, then the value of 2 sin A cos A is
(a) 0
(b) 1
(c) – 1
(d) 2
► (b) 1
21. If cos (40° + A) = sin 30°, the value of A is:
(a) 60°
(b) 20°
(c) 40°
(d) 30°
► (b) 20°
22. If 0° < θ < 90°, then sec 0 is
(a) >1
(b) < 1
(c) =1
(d) 0
► (a) >1
23. If cos (α + β) = 0, then sin (α – β) can be reduced to
(a) cos β
(b) cos 2β
(c) sin α
(d) sin 2α
► (b) cos 2β
24. sin (45° + θ) – cos (45° – θ) is equal to
(a) 2 cos θ
(b) 0
(c) 2 sin θ
(d) 1
► (b) 0