Question

If α and β are the zeroes of polynomial P(x)=x2−3x+2k, and α+β=α.β, then the value of k is ...............
A
3
B
-3
C
1
D
3/2
Medium
Solution

Verified by GMS
Correct option is D)
The given equation is P(x)=x2−3x+2k
Comparing with the standard form of quadratic polynomial ax2+bx+c=0 we get
a=1,b=−3,c=2k
We know that α=2a−b+D,β=2a−b−D, where D=b2−4ac
Then we get,
α+β=a−b=1−(−3)
α.β=ac=12k
Now, α+β=α.β ...... (Given)
∴3=2k
∴k=23
Hence, the answer is 23.
Comparing with the standard form of quadratic polynomial ax2+bx+c=0 we get
a=1,b=−3,c=2k
We know that α=2a−b+D,β=2a−b−D, where D=b2−4ac
Then we get,
α+β=a−b=1−(−3)
α.β=ac=12k
Now, α+β=α.β ...... (Given)
∴3=2k
∴k=23
∴3=2k
∴k=23
Hence, the answer is 23.
Tags:
Maths