Question
If α,β,γ are the roots of x3+px2+qx+r=0, then ∑α2(β+γ) is
A
3r+pq
B
3r−pq
C
pq−3r
D
pq+r
Medium
Solution
Verified by GMS
Correct option is B)
Given: α,β,γ are the roots of x3+px2+qx+r=0
We have
α+β+γ=−pαβ+βγ+γα=qαβγ=−r
Now,
∑α2(β+γ)=(α2β+α2γ)+(β2γ+β2α)+(γ2α+γ2β)
=(α+β+γ)(αβ+βγ+γα)−3αβγ
=−pq+3r
=3r−pq
α+β+γ=−p
αβ+βγ+γα=q
αβγ=−r
Now,
∑α2(β+γ)=(α2β+α2γ)+(β2γ+β2α)+(γ2α+γ2β)
Now,
∑α2(β+γ)=(α2β+α2γ)+(β2γ+β2α)+(γ2α+γ2β)
=(α+β+γ)(αβ+βγ+γα)−3αβγ
=−pq+3r
=3r−pq
Tags:
Maths