Answer: (1) 0
3tanA – 4 = 0
3tanA = 4
tanA = 4/3
tan2A = 16/9
sec2A = 1 + tan2A
sec2A = 1 + 16/9 = 25/9
Since A lies in third quadrant
sec A = -5/3 and cos A = -3/5
sin2A = 1−cos2A
sin2A = 1 – 9/25
sin2A = 16/25
sin A = -4/5
Need to find: 5sin2A + 3sinA + 4cosA
sin2A = 2 sinA cosA
5[2 sinA cosA] + 3sinA + 4cosA = 5 [2 × (-4/5) × (-3/5)] + 3 × (-4/5) + 4 ×(-3/5)
5[2 sinA cosA] + 3sinA + 4cosA = 10 × 12/15 – 512 – 12/ 5
5sin2A + 3sinA + 4cosA = 0
Tags:
Maths