9303753286127016 Trigonometric Ratios Of Standard Angles

Trigonometric Ratios Of Standard Angles

Trigonometric Ratios Of Standard Angles

Trigonometric ratios are Sine, Cosine, Tangent, Cotangent, Secant and Cosecant. The standard angles for these trigonometric ratios are 0°, 30°, 45°, 60° and 90°. These angles can also be represented in the form of radians such as 0, Ï€/6, Ï€/4, Ï€/3, and Ï€/2. These angles are most commonly and frequently used in trigonometry. Learning the values of these trigonometry angles is very necessary to solve various problems. 




Trigonometric Ratios Formulas:

The six trigonometric ratios are basically expressed in terms of the right-angled triangle.

Trigonometric Ratios

∆ABC is a right-angled triangle, right-angled at (shown in figure 1). The six trigonometric ratios for âˆ C are defined as:

sin âˆ C = ABAC

cosec âˆ C = 1sin âˆ C

cos âˆ C = BCAC

sec âˆ C = 1cos âˆ C

tan âˆ C = sin âˆ Ccos âˆ C                                

cot âˆ C = 1tan âˆ C

The standard angles for which trigonometric ratios can be easily determined are 0°,30°,45°,60° and 90°. The values are determined using properties of triangles. The two acute angles of a right-angled triangle are complementary.

Trigonometric Ratios Table (Standard Angles)

Angle = ∠C0°30°45°60°90°
sin C01212√3√21
cos C13√212√120
tan C013√13–√Not Defined
cosec CNot Defined22–√23√1
sec C123√2–√2Not Defined
cot CNot Defined3–√113√0

The above table shows the important angles for all the six trigonometric ratios. Let us learn here how to derive these values.

Derivation of Trigonometric Ratios for Standard Angles

Value of Trigonometric Ratios for Angle equal to 45 degrees

Trigonometric Ratios

In âŠ¿ABC, if âˆ C = 45°, then âˆ A = 45°. Since the angles are equal, âŠ¿ABC becomes a right angled isosceles triangle. So, AB = BC. Assume AB = BC = a units.

Using Pythagoras theorem ,

AC2 = AB2 + BC2

AC2 = a2 + a2

AC = a2–√ units

∠C = 45°

∴ sin âˆ C = sin 45° = ABAC = aa2√ = 12√                                 

cosec 45° = 1sin 45° = 2–√

cos âˆ C = cos 45° = BCAC = aa2√ = 12√                                         

sec 45° = 1cos 45° = 2–√

tan 45° = sin 45°cos 45° = a2√a2√ = 1                                                           

cot 45° = 1tan 45° = 1

Value of Trigonometric Ratios for Angle equal to 30 and 60 degrees

Trigonometric Ratios

In figure 3, Î”PQR is equilateral. The perpendicular from any vertex on the opposite side is coincident with the angle bisector of that particular vertex. Also, the perpendicular bisects the opposite side. If a perpendicular PS is dropped on QR, then âˆ QPS = âˆ SPR = 30° and QS = SR. Assume PQ = QR = RP = 2a units.

⇒ QS = SR = a units

In Î”PSQ, by Pythagoras theorem,

PQ2 = QS2 + PS2

PS2 = (2a)2 âˆ’ a2

PS = 3a2−−−√ = 3–√a

∠SPQ = 30°

sin âˆ SPQ = sin 30° = SQPQ = a2a = 12                                        

cosec 30° = 1sin 30° = 2

cos âˆ SPQ = cos 30° = PSPQ = 3√a2a = 3√2                                    

sec 30° = 1cos 30° = 23√

tan 30° = sin 30°cos 30° = 123√2 = 13√                                                        

cot 30° = BCAB = 3–√

Similarly, ratios of 60° are determined by finding the ratios of âˆ SQP as

sin 60° = 3√2                                                          

cos 60° = 12

tan 60° = 3–√                                                         

cot 60° = 13√

cosec 60° = 23√                                                          

sec 60° = 2

Value of Trigonometric Ratios for Angle equal to 0 and 90 degrees

In Î”ABC is a right angled triangle. If the length of side BC is continuously decreased, then value of âˆ A will keep on decreasing. Similarly, value of âˆ C is increasing as length of BC is decreasing. When BC = 0, ∠A = 0 , ∠C = 90° and AB = AC.

Taking ratios for âˆ A = 0°

sin âˆ A = sin 0° = BCAC = 0AC = 0

cosec 0° = 1sin 0° = 10 = Not Defined

cos âˆ A = cos 0° = ABAC = ACAC = 1

sec 0° = 1cos 0° = 11 = 1

tan 0° = sin 0°cos 0° = 01 = 0

cot 0° = 1tan 0° = 10 = Not Defined

Taking ratios for âˆ C = 90°

sin âˆ C = sin 90° = ABAC = ACAC = 1

cosec90° = 1sin 90° = 11 = 1

cos âˆ C = cos 90° = BCAC = 0AC = 0

sec 90° = 1cos 90° = 10 = Not Defined

tan 90° = sin 90°cos 90° = 10 = Not Defined

cot 90° = 1tan 90° = 01 = 0

Following is the trigonometric ratios table which contains all the trigonometric ratios of standard angles:

Solved Examples

Question 1: What is the value of tan 30+sin 60?

Solution: tan 30 = 1/√3 and sin 60 = âˆš3/2

Adding both the values we get;

1/√3  + âˆš3/2

Rationalising the denominator gives:

(2+√3.√3)/2√3

2+3/2√3

5/2√3

Question 2: What is the value of sin45 – cos 45?

Solution: Sin 45 = 1/√2 and cos 45 = 1/√2

Therefore, on putting the values we get:

1/√2 – 1/√2 = 0

Balkishan Agrawal

At the helm of GMS Learning is Principal Balkishan Agrawal, a dedicated and experienced educationist. Under his able guidance, our school has flourished academically and has achieved remarkable milestones in various fields. Principal Agrawal’s vision for the school is centered on providing a nurturing environment where every student can thrive, learn, and grow.

Post a Comment

Previous Post Next Post